

Leveraging EO Data for Environmental, Government, and Business Applications for Agriculture: Introducing the EO4EU Platform

Rob Carillo¹, Vasileios Baousis², <u>Claudio Pisa</u>² et al. ¹Trust-IT Services - ²ECMWF

EO FOR AGRICULTURE UNDER PRESSURE 2024 WORKSHOP May 13 - May 16 ESA-ESRIN

Consortium

The EO4EU consortium comprises 16 partners from 11 countries and is led by the University of Athens (NKUA)

Challenges for exploiting EO data

Diverse sources of information

Difficulty to find and retrieve relevant data

Lack of tools to download and process EO data

Solution with EO4EU Platform

Al-augmented ecosystem for Earth Observation data accessibility with Extended reality User Interfaces for Service and data exploitation, or **EO4EU**, is a European Commission funded innovation project which aims at creating an advanced platform for searching, discovering, processing and analyzing EO data.

The platform leverages **machine learning** to support handling of the characteristically-large volume of EO data as well as a combination of **cloud computing** infrastructure and **pre-exascale highperformance computing** to manage processing workloads.

EO4EU Platform

The EO4EU Platform* allows for searching, discovering processing and analyzing EO data and is based on a series of innovative technologies which allow to:

- Access** EO data from different sources (e.g., Copernicus, Galileo, ECMWF)
- Support a sophisticated representation of data through a semantic-enhanced Knowledge Graph
- Use Machine Learning from marketplace to EO data processing
- Visualize EO data through easy-to-use graphical interfaces and **Extended Reality** applications

\odot	Home
\sim	

🗠 Data Visualization

Map Visualization

▷ Console

Preferences

ጸ Account

⊖ Sign Out

Workflow Creator 뮺	器 My WF Products	钧 Select Workflow		
습 Home				
> Knowledge C	> Knowledge Graph			
> Workflow Ed	> Workflow Editor			
> File Explorer				
> XR/VR				

EO4EU Multi-cloud infrastructure

Kubernetes

Platform Manager

RANCHER

Central

Monitoring/Logging

5

Thanos OpenSearch Grafana

Auxiliary/Support

GitLab Git Repository

and Container Image

Registry

WEkEO Cloud Infrastructure

6

Configuration Management and Day2 Operations

CINECA HPC Infrastructure

Key results

Semantic Enhanced Knowledge Graphs

Data Fusion Techniques

Dynamic Semantic Annotation and Learned Compression

Augmented/ Extended Reality

Data Analytics Visualisations

Who benefits?

Researchers and Academia: Supports research institutions with more accessible EO data

Policy-Makers: Supports evidence-based policymaking and climate action

EO data providers:

Promotes further usage of EO data through value added tools

Private sector: Encourages innovation through more accessible EO data for non-technical users

Citizens and scientists: Enables new actions to reduce and monitor the impact of climate change

Standards Development Organisations: Contributes to the revision of standards related to EO data

EO4EU Use Cases

EO for Personalised Health care Services: expand mobile allergy and airborne hazards forecasting

Food Security: improve adaptability of food production using EO4EU for live climate data tracking and analysis

Soil Erosion: Integrate rainfall datasets through EO4EU to assess soil susceptibility to water erosion

Civil Protection: Improve disaster and calamity prevention and response using EO datasets

Ocean Monitoring: optimise shipping industry travel time across different oceans considering live weather data

Forest Ecosystems: Improve forest productivity using EO4EU to simulate water, anergy and carbon fluxes

Environmental Pests: Locust plague impact assessment and prediction

Visit https://eo4eu.eu/use-cases

EO4EU Use Case - Food Security 1/2

Description

- Analyse the impacts of climate change on agricultural crops
- Estimate the risk of yield loss over time
- The chosen target crop is industrial tomato, because of its importance on the Italian territory (target area)

Methodology

- Climate indicators were identified to define optimal and stress conditions of tomato and they were correlated with AgERA5 reanalysis climate data
- Adverse climate conditions to the crop yield were identified
 - comparing the curve of NDVI values of tomato fields over three years (2021-2023) with a reference curve derived from aggregated satellite data

EO4EU Use Case - Food Security 2/2

Initial Results

- Industrial tomato so far has not been affected by climate change on all fronts and it may expand its geographical range in the future
 - Further analyses will confirm or refute these preliminary results

More information Today at 6:00 pm

Poster2: Poster Session with Social Event

Time: Wednesday, 15/May/2024: 6:00pm - 7:00pm

Location: Marquee

The Marquee is outside the Big Hall Conference room

Combining Earth Observation data and Machine Learning to estimate industrial tomato yield response to climate change in Piacenza province, Italy

<u>Sara Magazzino</u>¹, Maria Luisa Quarta¹, Noemi Fazzini¹, Maximilien Houël², Monia Santini³, Sofia Pellegatta⁴, Rob Carrillo⁵ ¹MEEO S.r.I., Italy; ²SISTEMA GmbH, Austria; ³CMCC Foundation, Italy; ⁴Alma Mater Studiorum - University of Bologna, Italy; ⁵Trust-IT Services, Italy

MEEO

EO4EU Use Case - Forest Ecosystems

Description

- Goal: create a **digital twin of forest and non-forest areas** ٠
 - at national level at 10m resolution and according to the standard FAO-FRA • forest definition
- Increase the frequency of forest cover maps at annual or sub-annual intervals to ٠ ensure standardisation of National GHG reporting, ensuring consistencies between countries when tracking country-level emission trends

Methodology

- LSTM model trained on high resolution in-situ dataset from the Land Use/Cover ٠ Area frame Survey (LUCAS), combined with:
 - EO, in terms of input data, parameters or initial state variables
 - closer to reality than generalized information extracted from literature
 - Pixel-based timeseries data from different indices/bands allows separation into forest/non forest classes

Description

٠

•

٠

EO4EU Use Case - Soil Erosion 1/2

cmcc SISTEMA

Soil erosion by water is one of the primary causes underlying land degradation

Produce an updated, high-resolution and cutting-edge service for the evaluation of soil erosion in Italy

Methodology

- Satellite data and artificial intelligence ٠
- Leverage empirical approaches, e.g. the Revised Universal Soil Loss Equation (RUSLE) ٠

EO4EU Use Case - Soil Erosion 2/2

- Data collection
 - Aol: 5 Italian regions
 - Tasks:
 - Access to sub-hourly (1' to 30') rain gauge measurements from 2002 to 2022
 - Setup of algorithms for data harmonization
 - Preparation of a harmonised dataset
- Algorithm (incl. ML) design/selection for computation of soil susceptibility factors

Next Steps

- Continuing data collection and preparation for main inputs and sub-AoI
- Algorithm training, validation and testing under main inputs for soil susceptibility and rainfall erosivity
- Retrieving data for use case extension across all AoIs and adding scenarios

More information at https://eo4eu.eu/use-cases/soil-erosion

淡

15/05/24

Engage with us

Join our community to get the latest updates on:

- EO4EU Platform and its components
- Real-world applications of the platform
- New publications
- Invitation to our demos, webinars, workshops and events

Join the EO4EU community to get access to:

- Early adopter opportunities
- Unique use cases
- Tools available for use

Subscribe to our Newsletter

eo4eu.eu/newsletter

- Metadata should be defined and be accessible for all the provided EO data (not all services have the same level of metadata quality)
 - → Semantic annotation allowing advanced search and optimised data access and retrieval
- **Standardised** means of accessing and retrieving EO data (each service follows different data access means)

Thank you

www.eo4eu.eu

Claudio Pisa Cloud Computing Analyst at ECMWF Claudio.Pisa@ecmwf.int

Work funded by the EU Horizon Europe grant 101060784 (EO4EU)