
Armagan Karatosun – ECMWF
Francesco Maria Cultrera – CINECA
Lucía Rodríguez Muñoz – CINECA

Unlocking Multi-Cloud Observability
The Case Study of EO4EU Project's Observability Platform

Francesco Maria
Cultrera

Cloud Engineer
CINECA

Photo

Armagan Karatosun
Cloud Computing Engineer

ECMWF

Who are we?

19 March 2024 | Paris, France

Introduction: EO4EU Project
Earth Observation for European Union (EO4EU)* is a European Union-funded initiative that aims at
creating an advanced platform for searching, discovering, processing and analyzing Earth Observation
(EO) data and it is currently being developed by a consortium of European partners.

The EO4EU platform is based on a series of innovative technologies which allow to:
● Access** EO data from different sources (e.g., Copernicus, Galileo, ECMWF)
● Support a sophisticated representation of data through a semantic-enhanced knowledge graph
● Use machine learning (ML) from marketplace to EO data processing
● Visualize EO data through easy-to-use graphical interfaces and extended reality (XR) web

applications

* https://www.eo4eu.eu/platform
** Public user access soon-ish (Q1/2024)Work funded by the EU Horizon Europe grant 101060784 (EO4EU)

https://www.eo4eu.eu/platform

Introduction: EO4EU Architecture
The EO4EU Platform uses a multi-cloud and multi-
cluster architecture that leverages on 2 different
OpenStack infrastructures:

● CINECA Supercomputing infrastructure provides
High Performance Computing (HPC) and Cloud
capabilities with Leonardo and ADA Cloud
systems

● WEkEO*, a part of the Copernicus Data and
Information Access Services (DIAS)

offering Infrastructure as a Service (IaaS)
functionalities, and multiple Kubernetes clusters
distributed across them.

*ECMWF is one of the key partners of the WEkEO as Distributed Partner Infrastructure (DPI)

Pillars of Observability
Observability pillars

Metrics are numerical values that show how a
system is performing over a period of time.

Prometheus with Alertmanager - de-facto
standard for metrics in Kubernetes - often
referred as kube-prometheus.

Logs are immutable and timestamped records of
events that happened over time.

Fluentd (with Fluent Bit) and document
based database such as
OpenSearch/ElasticSearch - often referred
as EFK Stack.

Traces represent a series of causally related
distributed events that encode the end-to-end
request flow through a distributed system.

OpenTelemetry gained a lot of popularity
and adaptation, while still having options to
integrate with other established solutions
like Jaeger.

Standards

Metrics: Single-cluster Case

Prometheus (kube-prometheus)
Monitoring and alerting system
which collects metrics as time
series data.

Grafana (grafana-operator)
Popular application to interactively
visualize and analyze data.

Challenges in multi-cloud/cluster case:
● Scalability
● Availability
● Historical data
● Centralized alerts

Metrics: Multi-cloud/cluster Case

Thanos (Bitnami Helm chart) provides:
● Prometheus compatibility (Grafana

DataSource)
● Global Query View
● Unlimited retention
● Long-term storage compaction

○ Archival data
○ Faster metrics visualization

General issues:
● Sidecar approach management and

resource consumption
● Direct query (data stored from 2h)
● Querier requires reverse proxy to

reach clusters

Logs: Single-cluster Case
Fluentd/Fluent Bit (kube-logging/logging-
operator)

● De-facto standard for logs (especially on cloud-
native)

● Many source and output plugins
● Built-in filters and parsers available for

common use-cases (e.g, nginx)
● TLS encryption support

Opensearch (opensearch-k8s-operator)

● API driven document-based database
● Highly Available and scalable
● Distributed architecture
● Advanced features like storage tiers, index

templates and state management policies

Logs: Multi-cloud/cluster Case

● Index naming convention for each cluster
● Field mappers, State management and Index

Templates based on application type
● logging-operator applies config changes and log

flows to clusters on commit
● ClusterFlow and ClusterOutput manage log routing

to generic or special (e.g., ingress) indexes and
templates

We implemented an approach for all our production Kubernetes clusters to send their logs to a centralized
Opensearch cluster, and define standards to increase the efficiency and performance of Opensearch

Example indexes:
● logs-ingress-cineca-eo4eu-ope-2024-02-27
● logs-generic-cineca-eo4eu-ope-2024-02-27

Traces: Single-cluster Case
OpenTelemetry (opentelemetry-operator/otel-
collector)

● Vendor-agnostic proxy that can collect
observability data

● De-facto standard
● Processors to enrich data (e.g. k8sattributes)
● Supports broad variety of backends

○ Jaeger
○ Prometheus/Thanos

(prometheusremotewrite)

Jaeger (jaeger-operator/jaeger-all-in-one)

● Focused on distributed tracing in
microservices

● Service dependency graphs
● Multiple storage backends

○ Cassandra
○ Opensearch/Elasticsearch

Traces: Multi-cloud/cluster Case
OpenTelemetry (opentelemetry-operator/otel-collector)

● Configured to send traces to local Jaeger collector via OTLP
exporter

● Using processors to enrich data
● ingress-nginx in each cluster is configured sent traces to otel-

connector
○ ''otel-service-name" = unique
○ "use-forwarded-headers"
○ Additional opentelemetry_attribute(s)

Jaeger (jaeger-operator/jaeger-production)

● Using Opensearch as a centralized storage backend for all
collectors

● Traces are visualised by Grafana, in combination with the logs and
metrics

● Each collector uses the same indices that Jaeger creates
○ Multi-tenancy is an ongoing discussion*
○ Using es.index-prefix=traces*

* https://github.com/jaegertracing/jaeger/issues/3881

https://github.com/jaegertracing/jaeger/issues/3881

Our Multi-cloud Journey
Challenges

● How to integrate several tools?
● Deploy and manage tools at scale (requires automation)
● Multi tenancy for heterogeneous teams access (e.g., RBAC)
● Missing useful documentation (we contributed to this*)
● Networking solution (e.g., ingress or cross-cluster connectivity and service discovery)

Design principles
● Open-source and open-license ecosystem
● Automation through GitOps and Infrastructure as Code (IaC)
● Kubernetes-first approach:

○ Official operators as first choice
○ Well-supported Helm charts
○ Custom solutions when needed (e.g., Grafana Dashboards and Alerts)

We started with GitLab CI and Terraform, then replaced with ad-hoc solutions and GitOps tools.

*Contributions:
● Documentation: PVC and Volumes example · Issue #1391 · grafana/grafana-operator
● Update rbac-for-monitoring.md by armagankaratosun · Pull Request #1104 · rancher/rancher-docs

https://github.com/grafana/grafana-operator/issues/1391
https://github.com/rancher/rancher-docs/pull/1104

Introducing Observability Stack
By leveraging the available open-source ecosystem, we come up with the idea of Observability Stack

● Not a product - an umbrella project, to provide a
platform agnostic and flexible observability toolkit for
administrators and developers to build their solutions
tailored to their unique requirements.

● Automated Multi-cloud deployments - by
embracing GitOps as the 4th Pillar of Observability,
we automatically configure clusters in our multi-cloud
infrastructure to transmit metrics, logs, and tracing
data to a central "observer" cluster, ensuring
simplified deployment, day 2 operations and
consistency.

GitOps as the 4th Pillar
Observability stack uses Fleet (by Rancher) for the distribution of its components and the management of
their lifecycle.

● Cluster Labels: Each cluster registered as a
downstream cluster to Fleet Manager can be
labelled to form groups

● Cluster Group: Clusters connected to the same
Fleet Manager can be organized into groups
with a matchLabels selector

● Observability Stack uses this mechanism to
form Cluster Groups with labels:

○ observability-role: observer
○ observability-role: observee

GitOps as the 4th Pillar

● Simplifies the deployment of the
Observability Stack to the downstream
clusters

● Auto-enroll newly provisioned cluster as
Observee

● Automates the configuration changes
(e.g., adding new ClusterFlow) and version
updates

● Ensures consistency within the multi-
cloud/cluster setup

● Plug-and-play architecture - components
of the Observability Stack can be changed
easily

By adopting a logical separation of "observee" and "observer" cluster labels and cluster groups, each
cluster is configured to transmit its observability data, ensuring that the observer cluster has a centralized
dataset to analyze.

EO4EU Observability Platform
The EO4EU Observability Platform uses Observability Stack to observe the entire multi-cloud/cluster
from infrastructure to application level and it leverages on a observee and observer cluster role
subdivision.

The Observer is the central cluster which allows to query, collect and visualize all data coming from
Observee clusters which host all the EO4EU platform services.

Features:
● Scalable
● Highly available
● Full view on all sources
● Single access point for operators and

developers

Tools:
● Monitoring (Prometheus, Thanos)
● Logging (Fluentbit, Fluentd)
● Tracing (OpenTelemetry, Jeager)
● Indexing (OpenSearch)
● Visualization (Grafana)

Live Demo

Let's hope it will work :)

If not we have backup pictures

Moving Forward

Join us in overcoming the challenges on multi-cloud observability at

observability-stack.io

observability-stack/observability-stack

https://observability-stack.io
https://github.com/observability-stack/observability-stack

Thank you!
https://www.eo4eu.eu

Please leave feedback

Work funded by the EU Horizon Europe grant 101060784 (EO4EU)

Backup Demo

Dashboards: Metrics

Dashboards: Metrics

Dashboards: Metrics

Dashboards: Metrics

Dashboards: Metrics

Dashboards: Metrics

Dashboards: Metrics

Dashboards: Logs

Dashboards: Logs

Dashboards: Logs & Traces
Select log request ID to select only traces related to logs

Dashboards: logs & traces

Dashboards: Traces

Dashboards: Tracing view

